Mechanical + Electrical Challenges
MINNESOTA HEALTHCARE ENGINEERS ASSOCIATION

Darin May, PE, FPE, LEED AP BD+C
Todd Grube, PE, LEED AP
Justin Thiner, PE, LEED AP BD+C
Kimberly J. Pierson, PE, LEED AP, HFDP
Brad Kettunen, PE, LEED AP

May 3, 2019
TODAY’S AGENDA

- Pressures on Your Facility
- USP 797/800
- Emergency Power Systems
- Condensing Boilers

----- BREAK -----

- Humidity Control
- Cold Temperature Operation
- Commissioning
- Electrical Testing
- Medivators
- Procedure Rooms

--- DUNHAM ---

State Dept. of Health

Joint Commission
FGI
CMS
NFPA
ASHRAE Std 170 (2008)
Institutional, Care Network, or Provider Policies & Expectations
Occupant Comfort
- Patients
- Visitors
- Care Providers

O&M Expenses

Your Facility
DEPARTMENT OF HEALTH

- Construction project review of drawing and construction review
- When does a remodel change the applicable code?
 - Change of use – Yes
 - Moving walls – Yes
 - Painting the walls – No
 - Discuss early with DOH, design team, owner

CMS (MEDICARE/MEDICAID)

- ASHRAE 170-2008 (No Addenda)
JOINT COMMISSION

Joint Commission currently uses the 2014 Guidelines for Design and Construction of Hospitals

- Referenced in the Environment of Care

OPERATING ROOMS

<table>
<thead>
<tr>
<th>Version of Guidelines for Design & Construction of Healthcare Facilities</th>
<th>Pressure Relationship</th>
<th>Min. OA ACH</th>
<th>Min. Total ACH</th>
<th>Recirculated by means of room units</th>
<th>RH%</th>
<th>Temp (°F)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992-1993 AIA</td>
<td>Positive (no magnitude)</td>
<td>3</td>
<td>15</td>
<td>No</td>
<td>50-60</td>
<td>70-75</td>
<td></td>
</tr>
<tr>
<td>2001 AIA</td>
<td>Positive (+0.01" wg)</td>
<td>3</td>
<td>15</td>
<td>No</td>
<td>30-60</td>
<td>68-73</td>
<td></td>
</tr>
<tr>
<td>2006 AIA</td>
<td>Positive (+0.01" wg)</td>
<td>3</td>
<td>15</td>
<td>No</td>
<td>30-60</td>
<td>68-73</td>
<td></td>
</tr>
<tr>
<td>2010 FGI / ASHRAE 170-2008</td>
<td>Positive (+0.01" wg)</td>
<td>4</td>
<td>20</td>
<td>No</td>
<td>30-60</td>
<td>68-75 CMS Enforced</td>
<td></td>
</tr>
<tr>
<td>2014 FGI / ASHRAE 170-2013</td>
<td>Positive (+0.01" wg)</td>
<td>4</td>
<td>20</td>
<td>No</td>
<td>20-60</td>
<td>68-75 JC EC Reference</td>
<td></td>
</tr>
<tr>
<td>2018 FGI / ASHRAE 170-2017</td>
<td>Positive (+0.01" wg)</td>
<td>4</td>
<td>20</td>
<td>No</td>
<td>20-60</td>
<td>68-75</td>
<td></td>
</tr>
</tbody>
</table>
ENDOSCOPY ROOMS

<table>
<thead>
<tr>
<th>Guidelines for Design & Construction of Healthcare Facilities</th>
<th>Pressure Relationship</th>
<th>Min. OA ACH</th>
<th>Min. Total ACH</th>
<th>Recirculated by means of room units</th>
<th>RH%</th>
<th>Temp (°F)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992-1993 AIA</td>
<td>Not Addressed</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------------------------</td>
<td>-----</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>2001 AIA</td>
<td>Negative</td>
<td>2</td>
<td>6</td>
<td>No</td>
<td>30-60</td>
<td>68-73</td>
<td>New to the Guidelines</td>
</tr>
<tr>
<td>2006 AIA</td>
<td>No Requirement</td>
<td>2</td>
<td>6</td>
<td>No</td>
<td>30-60</td>
<td>68-73</td>
<td></td>
</tr>
<tr>
<td>2010 FGI / ASHRAE 170-2008</td>
<td>Positive</td>
<td>2</td>
<td>15</td>
<td>No</td>
<td>30-60</td>
<td>68-73</td>
<td>CMS Enforced</td>
</tr>
<tr>
<td>2014 FGI / ASHRAE 170-2013</td>
<td>No Requirement</td>
<td>2</td>
<td>6</td>
<td>No</td>
<td>20-60</td>
<td>68-73</td>
<td>JC EC Reference</td>
</tr>
<tr>
<td>2018 FGI / ASHRAE 170-2017</td>
<td>No Requirement</td>
<td>2</td>
<td>6</td>
<td>No</td>
<td>20-60</td>
<td>68-73</td>
<td></td>
</tr>
<tr>
<td>Bronchoscopy 2001 AIA to 2018 FGI</td>
<td>Negative (-0.01 in wg)</td>
<td>2</td>
<td>12</td>
<td>No</td>
<td>NR</td>
<td>68-73</td>
<td>All Air Exhausted</td>
</tr>
</tbody>
</table>

USP 797/800

- Final Versions to be issued September 2019
- Enforcement December 2019
- 797 Non-Hazardous
- 800 Hazardous
WHAT DO I NEED?

- Category 1 vs 2 Compounding
 - 12 Hour BUD

- Category 1 Segregated Compounding Area

- Category 2 Ante-Room and Buffer Room(s)

HAZARDOUS COMPOUNDING

- Hazardous Compounding Room
 - ISO 7
 - 30 ACH (supply)
 - -0.01 to -0.03 in WC
 - 68° F
 - Low exhaust for Refrigerator

- Ante Room
 - ISO 7
 - 30 ACH
 - +0.02 to +0.05 in WC
 - 68° F
 - Low return
NON-HAZARDOUS COMPOUNDING

- Non-Hazardous Compounding Room
 - ISO 7
 - 30 ACH
 - +0.02 to +0.05 in WC
 - 68°F
 - Low return
- Ante Room
 - ISO 8
 - 20 ACH
 - +0.02 to +0.05 in WC
 - 68°F
 - Low return

HAZARDOUS STORAGE

- Inside Hazardous Compounding Room
- Separate Room
 - Non-classified
 - 12 ACH Exhaust
 - -0.01 in WC
WHAT ARE WE COVERING

- Existing facility
- New or existing generator
- Existing or new ATS’s
- Testing compliance requirements
- Documentation

DEFINITIONS

EPS – Emergency Power Supply
EPSS – Emergency Power Supply System
EES – Essential Electrical System

- Level 1 – Loss of human life or serious injury (110)
- Level 2 – Less critical (110)
GENERATORS

NFPA 70 (NEC): 701.3:
- Test periodically
- Maintain unit
- Record maintenance
- Informational note refers to 110

NFPA 99
- Minimum 12 tests per year
- Does not need to meet 10 second start every month
- Refers to 110.8

NFPA 101: SEE 110

NFPA 110: 8.4:
- 30 minutes/month
 - Minimum exhaust temperature recommended by the generator manufacturer
 - OR minimum 30% of standby nameplate KW
- **If the above is not met:**
 - Load-bank one a year at 50% for 30 minutes and 75% for 1 hour.
 - **Document time, date, duration, etc.**

GENERATORS

Typical Commissioning Issues:
Interior and Exterior:
- Low coolant temp
- ECM vs. Generator Controller points
- Batteries in acid resistant tray
- Battery cover or not?
- Breakers can be shut off without alarm
- Engine idle/cool down not annunciated
- Emergency lighting (battery pack at unit)

Exterior
- Dampers fail open
- Remote shut-down
- Fuel class
ATS

- Existing facility
- New or existing generator or ATS with controls upgrades
- Testing compliance requirements
- Documentation

NFPA 70 (NEC): 701.3 and 5:
- Test periodically
- Maintain unit
- Record maintenance
- SCC Rating marked on the EXTERIOR of enclosure

NFPA 99
- 10 second criteria is spelled out here (Type 1)
- Does not need to meet 10 second start every month
- Refers to 110.8

NFPA 101: SEE 110

NFPA 110: 8.4.3.1:
- Initiate start from a different ATS each month
- Level 1 EPSS full test required once every 36/mo.
- DOCUMENT from which ATS the start signal was initiated
ATS

Typical Commissioning Issues: Interior and Exterior:
- Settings: Who determines?
- Fault current ratings
- Circuit breaker settings and coordination
- Labeling
- Testing
- Thermoscaning

Exterior
- Service entrance rating
- Internal heat and MONITORING

CONDENSING BOILERS

- **Why?**
 - Efficiency
 - Scarcity of Licensed Boiler Operators
 - Maintenance
CONDENSING BOILERS

- Why are condensing boilers more efficient?

- Because they can capture and use latent heat

CONDENSING BOILERS

- Water Temp < Dew Point Temp = Condensation

Boiler combustion = fuel + oxygen

Graphs courtesy of Mulcahy Co.
CONDENSING BOILERS

- Efficiency
 - Lower return water temp

2016 ASHRAE HVAC Systems and Equipment
Chapter 32

Boiler Thermal Efficiency Curve
Courtesy of Aerco

CONDENSING BOILERS

- Improving efficiency with existing HIGH TEMP hydronic components
CONDENSING BOILERS

- Heating Water Reset
 - Winter Setpoint: 180°F or 190°F, from original system design
 - Spring and Fall: 140°F

Sample - HW Reset Schedule

For Minneapolis:
8760 Bin Hours
0°F to 50°F: 4,478 hrs
-30°F to 0°F: 256 hrs

Mechanical + Electrical Challenges Pt. 2
MINNESOTA HEALTHCARE ENGINEERS ASSOCIATION
TODAY’S AGENDA

- Pressures on Your Facility
- USP 797/800
- Emergency Power Systems
- Condensing Boilers

----- BREAK -----

- Humidity Control
- Cold Temperature Operation
- Commissioning
- Electrical Testing
- Medivators
- Procedure Rooms

OPERATING ROOM HUMIDITY

Why?
- Important For
 - Reduction of infections
 - Reduction of electrostatic discharge
 - Integrity of sterile supplies and equipment
 - Preventing development of mold
OPERATING ROOM HUMIDITY

- Regulatory Requirement
 - FACILITY GUIDELINES INSTITUTE (FGI)
 - ASHRAE STANDARD 170
 - CENTERS FOR MEDICARE & MEDICARE SERVICES (CMS)

RELATIVE HUMIDITY
20% ↔ 60%

OPERATING ROOM HUMIDITY

- Humidification
 - Central system / Point-of-use
 - Building steam / Clean steam
 - Vapor barriers
 - Windows & exterior walls
OPERATING ROOM HUMIDITY

- **Dehumidification**
 - 68F Room Temp vs. 65F
 - Lower Coil Leaving Air Temperature
 - Increased Reheat

OPERATING ROOM HUMIDITY

- HVAC systems
- System capability
- Infrastructure investment

- Increased operating costs
 - Efficiency options
 - Leaving air temperature reset
 - Heat recovery coils
 - Energy wheels
OPERATING ROOM HUMIDITY

- Compliance policy
 - Infection control
 - Duration / Magnitude
 - Local / BAS alarming
 - Staff training
 - When / Who to call

AHU RESTART

- AHU shutdown on freeze? Now what?
 - Close the OA damper and Relief Air dampers
 - Open the Return Air damper
 - If bitterly cold, consider manual override of heating water control valve
 - Restart fans; run for 5-10 minutes to stabilize
 - Slowly open OA and Relief Air dampers; let unit stabilize after each subsequent opening

Note:
It is possible to automate this sequence, however it is difficult to estimate how slow the OA damper should open, especially in frigid cold
COMMISSIONING IN HEALTHCARE FACILITIES

- **Required per 2015 MN Energy Code**

 IECC, C408.2
 SYSTEM COMMISSIONING
 Exemption:
 1. < 40 TONS COOLING & < 600 MBH HEATING
 2. Sleeping Units in Hotels & Motels

- **ASHRAE 90.1, 6.7.2.4**
 SYSTEM COMMISSIONING
 Required:
 1. > 50,000 SF
 Except warehouses and semi-heated spaces

COMMISSIONING IN HEALTHCARE FACILITIES

- **Required per 2014 FGI Guidelines**
 - 1.2-7.1 Installation of new or modification of existing, the following shall be commissioned:
 - BAS system
 - Domestic hot water
 - Fire alarm and fire protection
 - Essential power systems

Areas of Concern
- CRITICAL AND INTENSIVE CARE
- SURGICAL SERVICES
- ISOLATION ROOMS
- PHARMACIES
- AREAS CONTAINING HAZARDOUS MATERIALS

State Adoption of the FGI Guidelines
WHAT ARE WE COVERING

- Breaker coordination
- Arc Flash study
- Breaker testing
- Lighting testing
- Panelboard load metering
- Battery testing
- Receptacle testing
- Compliance documentation

BREAKER COORDINATION

NEC Article 100:
- Coordination (Selective)
- Localization of an overcurrent condition to restrict outages to the circuit or equipment affected, accomplished by the choice of overcurrent protective devices, and their ratings for settings.

Tools used:
- SKM – Power Tools for Windows
- Easy Power
- EDSA
- ETAP
ARC FLASH STUDY

How is it Calculated?
- NFPA 70E
- IEEE 1584
- Preferred Method

Facility Responsibilities
- Employee training
- Written safety program
- Available PPE
- Insulated tools
- Arc Flash hazard calculations
- Proper labeling

BREAKER TESTING
Why test breakers:
- Known failure
- Nuisance tripping
- Suspicion of issues
- Confirm operation prior to installation in a critical system

How to test:
- Primary injection (preferred) – confirms sensors and electronics are functioning
- Secondary injection – only confirms electronics
- Follow NETA, NEMA and Manufacturers recommended procedures.
LIGHTING TESTING

- Verify egress path
- Verify critical lighting
- Verify controls conform to construction documents
- Verify interfaces to A/V and other systems
- Test with scheduled outage
- Documentation

PANELBOARD LOAD METERING

Why:
- Confirm distribution capacity
- Manage load growth

Where to Implement:
- On more critical systems where load growth is likely
- Where additional distribution is most costly (generation)

How:
- Integral to panelboards, ATS's, breakers
- Separate system
BATTERY TESTING

- Visual inspection
- Voltage testing
- Float current
 - Current delivered by the charger when battery is fully charged
 - Track for baseline and watch for increases
- Ripple current – Bad charger?
- Temperature – leads to short life
- Specific gravity – Verify battery chemistry
- Impedance testing – Indicator of battery health
- Discharge testing – Verifies capacity, but not health of system
- Documentation – confirm compliance and establishes baselines

RECEPTACLE TESTING

NFPA 99: 6.3.3.2
- Visual inspection
- Ground continuity
- Polarity
- Retention force – 115g (4oz)
- New devices at patient bed locations or deep sedation shall be tested.
- Additional testing as required by documented performance data?
 - Documented failure rates from manufacturer
 - Reports of receptacle issues
- Non-Hospital grade receptacles: 12 month intervals
- Document
MEDIVATORS

- What can go wrong?
 - Mixing valve
 - Hot water temperature
 - Water pressure
 - Water quality
 - Odors
- Fixes

MEDIVATOR FIXES

- Mixing valve approved by Medivator
- Reduce “dead leg”
- Heat trace
- Buffer tank with Booster pump
- Back flushing Pre-filter
- Connected exhaust duct
PROCEDURE ROOMS

- **ASHRAE 170 Requirements**
 - Positive pressure
 - 15 Total ACH/3 ACH OA
 - 70-75°F
 - 20-60% RH
 - Group E diffusers, laminar flow
 - MERV 13 filter bank number 1

PROCEDURE ROOMS

- **ASHRAE 170-2008 and 2013**
 - procedure room (Class A surgery): provides minor surgical procedures performed under topical, local, or regional anesthesia without preoperative sedation. Excluded are intravenous, spinal, and epidural procedures, which are Class B or C surgeries.
PROCEDURE ROOMS

- ASHRAE 170-2017

- procedure room*: a room designated for the performance of procedures that do not meet the definition of “invasive procedure” and may be performed outside the restricted area of a surgical suite and may require the use of sterile instruments or supplies. Local anesthesia and minimal and moderate sedation may be administered in a procedure room as long as special ventilation or waste-anesthesia gas-disposal systems are not required for anesthetic agents used in these rooms.

QUESTIONS?

DUNHAM
MINNEAPOLIS | DULUTH | ROCHESTER
CONTACT US

Darin May, PE, FPE, LEED AP BD+C
darin.may@dunhameng.com | 614-465-7639

Todd Grube, PE, LEED AP
todd.grube@dunhameng.com | 612-465-7643

Justin Thiner, PE, LEED AP BD+C
justin.thiner@dunhameng.com | 612-465-7647

Kimberly J. Pierson, PE, LEED AP, HFDP
kim.pierson@dunhameng.com | 612-465-7273

Brad Kettunen, PE, LEED AP
brad.kettunen@dunhameng.com | 612-465-7637